An Application of Genetic Algorithm with Iterative Chromosomes for Image Clustering Problems
نویسندگان
چکیده
Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. This paper represents a Genetic Algorithm for clustering on image data. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. In this study, a heuristic method based on Genetic Algorithms (GA) is adopted to automatically determine the number of cluster centroids during unsupervised classification. Efficient time techniques are used as a performance measure for clustering on image data. This paper compares Genetic algorithm with K-Means algorithm for clustering on image data.
منابع مشابه
Application of modified balanced iterative reducing and clustering using hierarchies algorithm in parceling of brain performance using fMRI data
Introduction: Clustering of human brain is a very useful tool for diagnosis, treatment, and tracking of brain tumors. There are several methods in this category in order to do this. In this study, modified balanced iterative reducing and clustering using hierarchies (m-BIRCH) was introduced for brain activation clustering. This algorithm has an appropriate speed and good scalability in dealing ...
متن کاملA New Method for Color Gamut Mapping by Genetic Algorithm
To reproduce an image, it is necessary to map out of gamut colors of the image to destination gamut. It is clear that the best color gamut mapping introduces the perceptually closest image to the original one. In this study, a new color gamut mapping is purposed by the aid of Genetic Algorithm (GA). The color difference between the original and mapped images based on S-LAB formula was chosen as...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012